N93-18373

AN INVESTIGATION

(NASA-CR-191899)

NASA-CR-191899 G a2

2B N
RIS T2
An Investigation of YR 224 7
Error Characteristics and Coding Performance P 3 %

NASA GRANT NAG5-2006
July 1, 1992 - June 30, 1993

Semi-Annual Report 1
July 1, 1992 - Dec 30, 1992

— . Submitted to:
~ Mr. Warner Miller
4 <+ Code 728.4
- :,' Instrument Electronic Systems Branch
g h Engineering Directorate
=) o NASA/Goddard Space Flight Center
Greenbelt, MD 20771
2 301-286-8183
~
™M
o
O
Z.
¢ o
o v o3 Submitted by:
0
<2 A William J. Ebel, Ph.D.
NneE N Frank M. Ingels, Ph.D.
MmO e Mississippi State University
w35 Drawer EE
o g S Mississippi State, MS 39762
wo Qe 601-325-3912
OES S
Ifow December 1992
Twig
v o
E v
gL~
OL 3w
XL -
0 w»
(TYR
“ -
U W %
Qa rw

An Investigation of
Error Characteristics and Coding Performance

NASA GRANT NAG5-2006
July 1, 1992 - June 30, 1993

Semi-Annual Report 1
July 1, 1992 - Dec 30, 1992

Submitted to:

Mr. Warner Miller
Code 728.4
Instrument Electronic Systems Branch
Engineering Directorate
NASA/Goddard Space Flight Center
Greenbelt, MD 20771
301-286-8183

Submitted by:

William J. Ebel, Ph.D.
Frank M. Ingels, Ph.D.
Mississippi State University
Drawer EE
Mississippi State, MS 39762
601-325-3912

December 1992

Table of Contents

I. INTRODUCTIONooooiirrieerieitcnnereneseneseessssesssssessassssssessesssssssnsssassesssrsssssnssssnns 1
. SOURCE CODE GENERAL DESCRIPTIONcoooviveininnrieererenersinessesssessesssens 2
. PROGRAM DESCRIPTIONSooiiitienrerctnntesrnesressneeensssevssssessessesseseessesessnens 7
A. Forward Error Correcting Codesccvevrieerirrvnriieenree e csesseessnesessessssesesssesnes 7
1. BlkDecod (Block Decoder)oooiieverceriererirceecerte et r e sanesssesraecssnasnne 7
2. VIEEIDL .ooereeeereer ettt vt r e sras e e e s e sraesnessaessesessaesasansseenessesrnessnsseens 8
B. Channel Error SEqUENCESccocvciirieentirneircntisiesresceesvesreesesnesvessessessessevsessesssrsnens 9
1. BinErrs (Binomial Error Sequence generation)ccecceceeeeveeeerernneeneinnennns 9
2. BrstErrS (Burst Error Sequence generation)ooceeeeeevierreeinesreensenanes 10
3. BstyErrs (Bursty Errors Sequence generation)cooeeevvvvnevecneeneeseesenes 11
C. INETICAVELScovvrrrcecrererreie st nrinneseessssstesaes e eaesse e snasseessrasseseobesbestssnssneenseneoneans 11
1. BlockInt (Block Deinterlaver)cccececievviiesrieneeerresseeneesmssessseessssneessrssnssones 12
2. BIKArr (Alternate Block Deinterleaver)cooveivcvineerisceeeresereereesessessnessnsens 13
3. DPCI (Periodic Convolutional Deinterl€aver)ccveivveecrreerssresresseesesnns 13
4. DPCIAIt (Alternate Periodic Convolutional Deinterleaver)c.coccoocvvevieenn. 14
D. Error Sequence Analysiscccovirieirirnreinirnenenriniiers s sesseessessesssennes 15
1. CVMseq (Cramer Von-Mises sequence distribution test)ccooceoveeveeveeennne. 15
2. CVMblk (Cramer Von-Mises distribution test on error sequence blocks) 15
3. DeltaEst (Bursty-error parameter estimation via the A method)ccovve....... 16
4. IntvHst (Error Interval HiStOZQram)c.ccovvvveevereereneseeeierornesnesseesessesseessessaens 17
5. GAPEst (fixed GAP burst error distribution Estimation)ccecevveeevevereernne 17
E. UIHES ..ocvvvieenveniencntinininnnsenres st sessestesrssseevassssessessessenssssasssestssasss stesssssssansessesnes 18
1. Make Utility for Lahey Fortran v5.0cccovninvnicceieeece s eresenenanes 18
2. CompSeq (ComPpare SEQUENCE)cccerereeerreerieceerirenssiseresenesesnssessereseseesesenes 20
3. SetErrS (Set BITOr PAtEITI)cooooeeiiecvieieeeieeeeeeeessesessesssesstsssssssssessssssssnsesssens 20
4. DisplSeq (Display Default ErTor SEQUENCE)cccevvuieeireeerereeereeeenreesesessesnenss 21
5. DisplFil (Display Error Sequence from user File)ccocoovvvverereeerssreersene 21
IV. NASA GSFC/MSU INTERRELATED CAPABILITIEScocooovveveeeeereeeeereeesssens 22
A. EOS Real Error Sequence Data conversion programccoeceveeveneeeereersssones 22
B. Error Sequence Archiver using Run Length Encodingcccoevveieevvveccvennnee. 22
C. Error Sequence Unarchiverccccvveeieneneniiesineiseeneeensesesssssssssssssssesssssssssssses 23
V. PREVIEW OF EXPECTED RESULTSoooiierinenrinteeeneeerereseessessseesessessessessessssses 24
A, Research FOCUS 1 ...ttt s s ee e nese e s s em e e 24
B. ReSearch FOCUS 2 ...ttt ettt e seeeessesesssnen e eseenesnes 25

C. Choosing System Parameters
BIBLIOGRAPHYcoiiiiiniicstieesenresesseessesssseseesssnessessseesssesesssssesess seessssesssnssseses 31

I. INTRODUCTION

This report describes research performed to date on NASA Grant NAG5-2006 for the
period July 1, 1992 through December 1, 1992. This work involves studying the performance of
forward error correcting coding schemes on errors anticipated for the Earth Observation System
(EOS) Ku-band downlink.

The EOS transmits picture frame data to the ground via the Telemetry Data Relay Satellite
System (TDRSS) to a ground-based receiver at White Sands. Due to unintentional RF
interference from other systems operating in the Ku band, the noise at the receiver is
non-Gaussian which may result in non-random errors output by the demodulator. That is, the
downlink channel cannot be modeled by a simple memoryless Gaussian-noise channel. From
previous experience, it is believed that those errors are bursty.

The research has proceeded by developing a computer based simulation, called
Communication Link Error ANalysis (CLEAN), to model the downlink errors, forward error
correcting schemes, and interleavers used with TDRSS. To date, the bulk of CLEAN, described
in Sections 3, 4, and 5, has been written, documented, debugged, and verified. The procedures
for utilizing CLEAN to investigate code performance have been established and will be
discussed in Section 5.

II. SOURCE CODE GENERAL DESCRIPTION

Each system component (decoder, deinterleaver, etc.) has been implemented in CLEAN as
separate executable computer programs which interface with each other through data files
including an error sequence data file. This allows them to be executed sequentially via a batch
file.

All computer programs read parameters from a separate ASCII parameter file with a fixed
default name. The default name for the parameter file is the same as the executable but has the
extension 'prm’. Also, there is a global parameter file, *’ID.prm’, which contains a simulation
identifier (ID). Each program generates an output file with an extension identical to this ID.
This output file contains all the calculated statistics and estimated parameters from the program.
This allows all the files generated by a specific run to be quickly identified and distinguished
from data files generated by other runs.

To conduct the studies, a batch file is created which contains a series of executable
programs. The type and order of the executables in the batch file implements a particular system
configuration. For example, if the user chooses to use a Reed-Solomon (RS) decoder to decode a
sequence of random errors, then the batch file contains two executables; the first generates a
random error sequence and the second uses an RS decoder to correct them. In general, the batch
file contains one of the channel error sequence generation programs which will generate an error
sequence stored in file name ’error.seq’. Each program which is executed makes use of and/or
modifies that error sequence and generates statistics and other outputs for the error pattern.

The programs have been written with parameter bounds in mind. For example, the
programs are designed so that the lowest channel average error probability to be investigated,
coded or uncoded, is roughly 10, Along with this, it is assumed that 20 errors are the minimum
number required to characterize the statistics of the channel, however, in general many more
errors will be generated per sequence. Thus as an upper bound, generating an error sequence,
coded or uncoded, with an error probability of 10" requires a minimum of 20/10° = 2x10’ error
sequence values. The error sequence file is stored in a "packed" format so that 15 error sequence
values are stored per two bytes of memory. Therefore, the largest error sequence file is
2x107/(2/15) = 2.67Mbytes. This is sufficiently small so that allowable disc space on most
computers can accommodate several files at once. In general, error files are nof stored but are
generated on the fly. Results can be reproduced by regenerating an error sequence given the
proper random number generator and the seed. If it turns out that regenerating the error

sequence takes too long, then a set of error sequences can be generated and stored on disc or
magnetic tape to be retrieved when required.

All programs have been documented upon completion with a documentation test run. All
the generated documentation is stored in a common binder for later reference.

Each program conforms to a documentation standard which includes a
program/subroutine/function header as well as line comments within the code. On average, there
should be a comment line per 6 lines of code to indicate the purpose of the next few lines of
code. The routine header takes the following form:

Ct.Q*ii**i'fit*ti'tttt*i*'tttf'**i'i**ttt*tt*ittiﬁ'tiit*ttii*tﬁ"'f*i*
Ct

c* - Program/Subroutine/Function name: name (Acronym meaning)

ct

c* - Purpose: This program/subroutine/function ...

Ct

cl

c* - Revision History:

c* Date Who Reason

ci - ———— — e e e e e e e e v = e —_——
c* May 25, 1392 WE Original

C'

ct

c* - Variable/File List:

c* Name Type Description
c* e e e e e e e e e e e s i e e e e e

c* Inputs:

c* Outputs:

c* Internals:

c* - Subroutines called:

c* - Subroutines called by:

c* -~ Functions called:
c* - Functions called by:

ci'i'ﬁ'iﬁ'I*'iﬂiiﬂﬂi‘ﬁiiiﬁ't*i*iti'i*iii'iiiitf*ﬁiﬁi*i*i**i{ti**i*tt*'it

As an example, a program written to create a bursty-error sequence may have a header
which appears as follows:

Citii't!iii"tit'Qt"t*"'lt'it"fﬁi*i*t*'*ﬁii*ﬁiﬁii*i*iﬁi*iﬁ*liitt*i'

ct

c* - Program name: BstyErrS (Bursty-Error Sequence)

C*

c* - Purpose: This program generates an binary error sequence with

c* bursty errors. The error sequence denotes a correct binary channel

c* transmission with a 0 and denotes an error with a 1. The error

c* sequence is partitioned into two main, noncontiguous parts, the burst
c* error part and the thermal error part. The method used to generate

c* each part of the error sequence depends upon the density of errors to
c* be generated. For each error sequence part, if the required density of
c* errors 18 greater than .01, then the program uses a conditional test on
c* a uniform random number in the range (0,1). If the density of errors 1is
c* less than .0l, then the program will use a sample from the exponential
c* distribution to generate the next error occurrence time.

c* This program inputs parameters from an ASCII data file with default
c* name ‘BstyErrs.prm’ and outputs the error sequence to a data file

c* with default name 'error.seq’. In addition, various statistics are

c* output to an ASCII data file with default name ’BstyErrs.ID’, where

c* ID is a three letter identifier for the current run which 1s input from
c* file 'ID.prm’.

c* The program is run by editing the parameter file ‘BstyErrs.prm’ and
c* selecting the appropriate parameters and by choosing a program ID by

c* editing file 'ID.prm’. Executing the program generates the ’error.seq’
c* file which contains an error sequence {(in packed format) wath

c* binomially distributed errors. It does not matter whether the output
c* file ’'error.seq’ exists or not. If it exists, it is overwritten without
c* a prompt to the user.

c* Even though Poisson distributed bursts may overlap in theory, this

c* progam does not allow error bursts to overlap. The user must take care
c* to specify input parameters sc that the probability of overlapping

c* burst is negligible. It is alsoc assumed that Peg<Peb.

Ct

c* - Revision History:

c* Date who Reason

Ct — -~

c* Aug 20, 1992 WE Criginal

c* Sept 14, 1992 WE Modified to use Makefile to link source

c* and updated the documentation

c* Qct 2, 1992 WE Output Number cf Errors to the error.seq

c* file header

c* Nov 4, 1992 AE Jpdated NextBurst function argument list

c* to 1nclude the previous burst length

c* Nov 13, 1992 dE Added write to output LoglO(Density)

c* Nov 16, 1932 WE Changed all real variables to double precision
*

o

c* - Variable/File List:

c* Inputs: None (See subroutine ReadParams)

ci

c* Qutputs:

c* Name Type Description

ct ______________ . ———— ———————— ———

c* error.seq file Error sequence output file

c* (in packed format)

c* Nerrs integer*4 Total Number of errors generated

c* ErrDensity real*8 Total Error density for generated seq

c* NBurstyErrs integer*4 Number of errors in the bursts

c* GenBurstDen real*s Error density within the error bursts

c* GanThermDen real*8 Error density outside the error bursts

o NBursts integer*4 Total number of bursts generated

c* GenMeanIntv Teal*8 Average burst occurrence

c* TotalBLength 1nteger*{ Total sum of burst lengths

c* GenBDuration real*s Average burst length (seq sym)

Ct

c* Internals:

c* ID character*3 Identifier for statistics output file

c* N integer*4 Error sequence length

c* Tbs real*8 Binary channel symbol frequency (freq.)

c* Peg real*g Thermal error density

c* PegSeed real*8 Peg random number generator seed

c* Peb real*s Burst error density

c* PebSeed real*8 Peb random number generator seed

c* IntvFlag 1nteger*4 = 1, Periodic error occurrence times

c* = 2, Gausslan error occurrence times

c* = 3, Poisson error occurrence times

c* IntvMean integer*4 Burst occurrence rate (interval mean)

c* IntvSeed real*s Interval random number generator seed

c* IntvVar integer*4 Burst occurrence rate variance

c* {(interval statistic variance)

c* LngthFlag 1integer*4 = 1, Fixed length error bursts

c* = 2, Gaussian dist. error burst lengths

c* = 3, Exponential error burst lengths

c* LngthMean 1nteger*4 Burst length distribution mean

c* LngthSeed real*s Length random number generator seed

c* LngthVar 1nteger*4 Burst length distribution variance

c* i,3 integer*4 Do loop 1indices

c* RecNum integer*4 Record number index (error.seq file)

c* NseqSym integer*4 Number of DBESS

c* Error(l5) 1integer*4 Contains 15 error sequence values

c* zaro integer*4 Identically the number 0

c* BurstIntvCount integer+*4 Interval Count to next error burst

c* PrevLength 1integer*4 Previous Burst Length

c* ErrorBurstCount i1nteger*4 Length of next error burst (seq sym)

c* PegIntvCount integer*4 Interval Count to next Therm error

c* PebIntvCount integer*4 Interval Count to next burst error

c* DBESS integer*4 15 consecutive error sequence values

c* stored in a 2 byte integer. Stands

c* for Double Byte Error Sequence Symbol

c* URV real*8 Uniform random variable in [0,1])

c* NSplit (2) integer*2 A dummy array used to access each

c* double byte of the integer*4

c* number N.

c* NESplit (2) integer*2 A dummy array used to access each

c* double byte of the integer*4

c* number Nerrs.

ct

cl'

c* - Subroutines called: ReadParams, IterBinErrGen
c* - Functions called: PackErrors, UniformRV, NextBurst, NextLength

CERR AR AN ARRN AR R A AT A R RN Ak AR A AR A Ak A A kR d bR kb kN ko h ot deod ok

Figure 1 shows an overall block diagram depicting the CLEAN simulation capability. The
CLEAN simulation requires the following assumptions:

1) The transmitted data is all zero

2) Synchronization has been established (i.e. only steady state error statistics are
considered)

3) Demodulator performs hard decisions

At each of the points labeled A, B, C, D, and E shown in Figure 1, it is possible to perform
statistical analysis including (see Section ITI.D below):

1) Perform the Cramer Von Mises distribution test to determine if the errors are random.
2) Perform the Cramer Von Mises distribution test on blocks of the error sequence.
3) Estimate burst-error parameters

a) Average burst-error length
b) Variance of the burst-error length
c) List of the burst-error lengths
d) Average random interval length
e) Variance of the random interval length
d) List of the random interval lengths
4) The error interval histogram (for random errors this should be an exponential
distribution)
5) Determination of the burst-error distribution ’ala’ CLASS

For each program, the calculated statistics are output to the log file as described above.

Block Encoder => Block Interleaver =>
Convolutional Encoder => PCI

Error Vector E

Bursty
Noise

Always Send 0 Vector

‘ Block
Deinterleaver

)Y | DPCT

Viterbi

e [

o 0—

Reed-Solomon

U o—

Decoder

—I-——— Data

Figure 1. Overall block diagram depicting the CLEAN simulation capability.

III. PROGRAM DESCRIPTIONS

In this section, the programs which deal with the TDRSS system simulation are briefly
described.

A. Forward Error Correcting Codes

The contract requires that Reed-Solomon codes and convolutional codes be considered.
Reed-Solomon codes are a class of block codes. To this end, a program is described which
implements the effect of an (n,k,m,r) block incomplete, errors-only decoder and a separate
program to implement a Viterbi decoder which is used to decode convolutional codes.

1. BlkDecod (Block Decoder)

This program performs the effect of an incomplete, errors (erasure) only decoder. The
program operates by simply partitioning the error sequence into blocks equivalent to a received
codeword. Error statistics are calculated from each block including the number of bit errors and
the number of code symbol errors. If the incomplete decoder detects more errors than the error
correcting capability of the code, then the errors are not corrected, otherwise they are.

This program inputs parameters from an ASCII data file with default name
’BlkDecod.prm’ and inputs the error sequence from the file with default name ’error.seq’. The
decoded error sequence is output to the ’error.seq’ file and various statistics are output to an
ASCII data file with default name 'BlkDecod.ID’, where ID is a three letter identifier for the
current run which is input from file *ID.prm’.

The program is run by editing the parameter file 'BlkDecod.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file *ID.prm’. Executing the
program generates the 'error.seq’ file which contains an error sequence (in packed format) with
decoded errors. The 'error.seq’ file must exist prior to the execution of this program.

There is one important assumption associated with the output of this program. It is
assumed that the undetected word error probability is negligible. This is important because this
program does not implement an actual decoding algorithm, rather the decoded error sequence is
constructed by simply counting errors. Under certain circumstances, it is possible for the errors
to occur in such a way so that the received codeword is mapped to within a sphere of ¢ (error
correcting capability of the code) about the wrong codeword. A decoding algorithm cannot
detect (all by itself) that error pattern because it thinks that only a few errors occurred which are

then corrected to the wrong codeword. The probability that this event occurs is called the
undetected word error probability. The algorithm implemented here cannot tell whether an error
pattern is undetectable by a true decoding algorithm. Therefore, this probability is assumed to be
negligible which is, in general, a valid assumption.

2. Viterbi

This program performs hard decision Viterbi decoding assuming the all zero sequence is
transmitted. The Viterbi decoding algorithm assumes that the trellis begins at the all zero state
for the first received code symbol. The end of the decoding process does not terminate with
flush bits. Instead, steady state Viterbi decoding is performed up to the end of the error sequence.

This program inputs parameters from an ASCII data file with default name ’Viterbi.prm’
and outputs the decoded error sequence to data file with default name ’error.seq’. In addition,
various statistics are output to an ASCII data file with default name ’Viterbi.ID’, where ID is a
three letter identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file ’Viterbi.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the
program generates the ’error.seq’ file which contains an error sequence (in packed format) with
the decoded error sequence. The ’error.seq’ file must exist prior to the execution of this
program. There are several assumptions associated with the implementation and output of this
program.

1) Itis assumed that the all zero sequence is transmitted,

2) The path with the minimum Hamming distance at the i" Trellis stage is used to find the
decoded bit for the output,

3) Itis assumed that the convolutional encoder is either rate 1/2 or rate 1/3. It is straight
forward to extrapolate this program to accommodate a rate 1/7 encoder, however this
has not been done to date. It should also be possible to modify this program to
accommodate a rate m/n encoder using the concept of a punctured convolutional code,
again however, this has not been done to date.

The Viterbi algorithm, as implemented here, updates the Trellis by iterating through each
of the states at the next stage. The Hamming distance for each path entering a given state are
computed and the survivor is kept while the other sequence is discarded. In case of a tie, a coin
is flipped (via a Uniform RV in [0,1]) to determine the survivor. The survivor is identified by
updating the MLStateTrace array. This array contains the state of the previous Trellis stage
which connects to the given state being processed. For example, suppose that we are now

processing the next stage in the Trellis, we first consider state 1 at the next stage. After

investigating the Hamming distances for the two possible paths entering state 1, we find that the
survivor path came from state 3 of the previous Trellis stage. Therefore, MLStateTrace(i,1) =3
where i is the stage index.

To prevent overwriting the Metric array, two Metric arrays are alternately processed for
each Trellis stage. This is why the algorithm performs two Trellis stage updates for each main
loop. In the first Trellis stage update, the metrics are found in array MetricA and the new metrics
are stored in MetricB. In the second Trellis stage update, the metrics are found in array MetricB
and the new metrics are stored in MetricA.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this
program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given
trellis stage. therefore, if there are N trellis states, then there are only 2*N possible paths between
two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1 and 2
enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from
which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path #, and
PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely
define the steady state trellis.

B. Channel Error Sequences

The contract requires that several types of channel errors be considered. A program is
described which generates Binomial (random) errors which would occur if the channel noise was
additive white Gaussian noise (AWGN). Two other programs are described which generate
burst errors and bursty errors. These allow the error bursts to have a variety of length statistics
and occurrence statistics in addition to a variety of error density statistics.

1. BinErrs (Binomial Error Sequence generation)

This program generates an binary error sequence with binomially distributed errors. The
error sequence denotes a correct binary channel transmission with a 0 and denotes an error with a
1. The method used to generate the error sequence depends upon the density of errors to be
generated. If the required density of errors is greater than 0.01, then the program uses a
conditional test on a uniform random number in the range [0,1]. If the density of errors is less

than 0.01, then the program uses a sample from the exponential distribution to generate the next
error occurrence time.

10

This program inputs parameters from an ASCII data file with default name "BinErrs.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name ’BinErrs.ID’, where ID is a three
letter identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file 'BinErrs.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the
program generates the ’error.seq’ file which contains an error sequence (in packed format) with
binomially distributed errors. It does not matter whether the output file ’error.seq’ exists or not.
If it exists, it is overwritten without a prompt to the user.

There are no assumptions associated with the implementation or output of this program.
2. BrstErrS (Burst Error Sequence generation)

This program generates a binary error sequence with burst errors. The error sequence
denotes a correct binary channel transmission with a 0 and denotes an error with a 1. The error
sequence is partitioned into two main, noncontiguous parts, the burst error part and the error free
part. The method used to generate the burst error part of the error sequence depends upon the
density of errors to be generated. If the required density of errors is greater than 0.01, then the
program uses a conditional test on a uniform random number in the range [0,1]. If the density of
errors is less than 0.01, then the program uses a sample from the exponential distribution to
generate the next erTor occurrence time.

This program inputs parameters from an ASCII data file with default name "BurstErrs.prm’
and outputs the error sequence to a data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name 'BurstErrs.ID’, where ID is a three
letter identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file 'BurstErrs.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file *'ID.prm’. Executing the
program generates the ’error.seq’ file which contains an error sequence (in packed format) with
binomially distributed errors. It does not matter whether the output file ’error.seq’ exists or not.
If it exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow
error bursts to overlap. The user must take care to specify input parameters so that the
probability of overlapping bursts is negligible.

11

3. BstyErrs (Bursty Errors Sequence generation)

This program generates an binary error sequence with bursty errors; that is, a combination
of random and burst errors. The error sequence denotes a correct binary channel transmission
with a O and denotes an error with a 1. The error sequence is partitioned into two main,
noncontiguous parts, the burst error part and the random error part. The method used to generate
each part of the error sequence depends upon the density of errors to be generated. For each
error sequence part, if the required density of errors is greater than 0.01, then the program uses a
conditional test on a uniform random number in the range [0,1]. If the density of errors is less
than 0.01, then the program uses a sample from the exponential distribution to generate the next
eITor occurrence time.

This program inputs parameters from an ASCII data file with default name
"BurstyErrs.prm’ and outputs the error sequence to a data file with default name ’error.seq’. In
addition, various statistics are output to an ASCII data file with default name ’BurstyErrs.ID’,
where ID is a three letter identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file *BurstyErrs.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the
program generates the ’error.seq’ file which contains an error sequence (in packed format) with
binomially distributed errors. It does not matter whether the output file ’error.seq’ exists or not.
If it exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow
error bursts to overlap. The user must take care to specify input parameters so that the
probability of overlapping bursts is negligible. It is also assumed that P,, < P,,.

C. Interleavers

The contract requires that block interleavers and periodic convolutional interleavers be
considered. To this end, a program is described which implements the effect of a block
interleaver and a separate program is described which implements the effect of a periodic
convolutional interleaver. Also, there are two versions of each program. The two versions
implement the same operation but trade off computer code complexity for execution speed.

12

1. BlockInt (Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file ’error.seq’.
It is assumed that the channel symbols corresponding to those errors have already been
interleaved using an (C,R,m) block interleaver. The deinterleaver groups every m error sequence
values together and deinterleaves them as a group. The method used to implement the function
of the block interleaver is to read in a block of the error sequence and to use a series of formulas
to perform the block deinterleaving. These formulas are described below.

Let b, denote the error sequence input to the deinterleaver and let d, denote the error
sequence output by the deinterleaver. Note: the subscripts are assumed to be incremented
starting with zero. Then b, is read into the deinterleaver memory array (by columns) at
location:

Symbol index = int(K/m) ==
Row of b, = Mod(Y,R) ==

Column of b, = int(Y/R) == j
Depth of by, = Mod(K,m) ==

Given i, j, and p the deinterleaved value location (read out by rows) is found to be
L=m*(i*C+))+p

The implementation found below actually calculates K given L. The actual value b, is
found in a buffer which is loaded with error sequence values. The calculation is as follows:

1) L points to location BuffL in the buffer, BuffL = Mod(L,BuffLength)
2) The interleaved location for BuffL is BuffK where

1l = Mod(BuffL,m)

X =Buffl/im

BuffK = m * (R*Mod(X,C) + intd(X/C)) +
where BuffLength=R*C*m. Note that there is a problem deinterleaving the end of the ’error.seq’
file due to a possible partial interleaver block at the end of the sequence. The program attempts
to partially deinterleave this last partial block. An error sequence could be zero padded to fill a
partial block, thereby changing slightly the overall error statistics.

This program inputs parameters from an ASCII data file with default name *BlockInt.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name ’BlockInt.ID’, where ID is a three
letter identifier for the current run which is input from file 'ID.prm’.

13

The program is run by editing the parameter file 'BlockInt.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the
program generates the ’error.seq’ file which contains an error sequence (in packed format) with
deinterleaved errors. The 'error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
2. BIkArr (Alternate Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file ’error.seq’.
It is assumed that the channel symbols corresponding to those errors have already been
interleaved using an (C,R,m) block interleaver. The deinterleaver groups every m error sequence
values together and deinterleaves them as a group. The method used to implement the function
of the block interleaver is to read in a block of the error sequence into a buffer which mimics the
block interleaver memory array. The error sequence is read in by rows and deinterieaving is
performed by reading the error sequence out by columns.

This program inputs parameters from an ASCII data file with default name 'BlockInt.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name "BlockInt.ID’, where ID is a three
letter identifier for the current run which is input from file *ID.prm’.

The program is run by editing the parameter file ’BlockInt.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file 'ID.prm’. Executing the
program generates the ’error.seq’ file which contains an error sequence (in packed format) with
deinterleaved errors. The 'error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

3. DPCI (Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file ’error.seq’. Itis
assumed that the channel symbols corresponding to those errors have already been interleaved
using an (Ntaps,M) periodic convolution interleaver. The method used to implement the function
of the periodic convolutional interleaver is a series of formulas as described below. These
functions are applied to a portion of the error.seq array which is stored in a ring buffer.

Let by denote the error sequence input to the DPCI and let d, denote the error sequence
output by the DPCI. Then the index L relates to the index K as follows,

14

K = Mod((L-1),Ntaps) * M * Ntaps + L

Note that there is a problem deinterleaving the end of the ’error.seq’ file due to the
sequential nature of the algorithm. The DPCI error sequence file is truncated to eliminate the
"don’t cares".

This program inputs parameters from an ASCII data file with default name "DPCILprm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name "DPCLID’, where ID is a three letter
identifier for the current run which is input from file "ID.prm’.

The program is run by editing the parameter file 'DPCI.prm’ and selecting the appropriate
parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with

deinterleaved errors. The error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
4. DPCIAIt (Alternate Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file ’error.seq’. Itis
assumed that the channel symbols corresponding to those errors have already been interleaved
using an (n,M) periodic convolution interleaver. The method used to implement the function of
the periodic convolutional interleaver is a series of formulas as described below.

Let b; denote the error sequence input to the DPCI and let d; denote the error sequence
output by the DPCI. Then the index j relates to the index i as follows,

J=i-[(i-1) mod n}*M*n

Note that there is a problem deinterleaving the end of the ’error.seq’ file due to the
sequential nature of the algorithm. For this case, the ’error.seq’ file is filled with zeroes for those
deinterleaved positions which result from locations which are beyond the end of the ’error.seq’
file.

This program inputs parameters from an ASCII data file with default name 'DPCIL.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name 'DPCIL.ID’, where ID is a three letter
identifier for the current run which is input from file *ID.prm’.

15

The program is run by editing the parameter file 'DPCI.prm’ and selecting the appropriate
parameters and by choosing a program ID by editing file 'ID.prm’. Executing the program
generates the ’error.seq’ file which contains an error sequence (in packed format) with
deinterleaved errors. The ’error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
D. Error Sequence Analysis

The contract requires that error sequence be characterized. This amounts to modeling the
errors by a predefined mathematical model. Several mathematical models are considered; one
which models the errors as bursty errors, and one which models the errors as burst errors. Bursty
errors are characterized by errors which occur within bursts as well as errors which occur outside
bursts. Burst errors are characterized by errors which occur only within bursts. In addition, two
programs have been written to implement distribution tests for the purpose of determining if an
erTor sequence, or a segment of an error sequence, resulted from random errors.

1. CVMseq (Cramer Von-Mises sequence distribution test)

This program uses the Cramer Von-Mises (CVM) distribution test to determine whether
the error sequence (in default file ’error.seq’) is binomially distributed with confidence level
alpha. The method implemented is simple. The error sequence is read in by blocks and the
overall CVM test statistic is calculated. At the end of the program, the test statistic for the
complete sequence along with a preselected set of critical values is output to the user. The
results are also output to ’"CVMseq.ID’ file where ID is a three letter identifier for the current run
which is input from file *ID.prm’.

Executing the program causes the ’error.seq’ file to be read which contains an error
sequence (in packed format). The ’error.seq’ file must exist prior to the execution of this
program. There are no assumptions associated with the implementation or output of this
program.

2. CVMblk (Cramer Von-Mises distribution test on error sequence blocks)
This program uses the Cramer Von-Mises (CVM) distribution test to determine whether

the error sequence (in default file "error.seq’) is binomially distributed with confidence level
alpha. The error sequence is read in by blocks and the CVM test statistic is calculated for each

16

block. At the end of the program, the test statistics for each block along with a preselected set of
critical values are ordered and output to the user. The results are also output to ’'CVMblk.ID’ file
where ID is a three letter identifier for the current run which is input from file 'ID.prm’.

Executing the program causes the ’error.seq’ file to be read which contains an error
sequence (in packed format). The 'error.seq’ file must exist prior to the execution of this
program. There are no assumptions associated with the implementation or output of this
program.

3. DeltaEst (Bursty-error parameter estimation via the A method)

This program estimates parameters associated with a bursty error sequence. The method
employed segments the error sequence into random error regions and-burst error regions. The
algorithm implemented operates on the error sequence iteratively. For each iteration, the
algorithm is either tracking a burst segment or a random segment. At each iteration, the error
sequence interval to the next error is found. If the algorithm is tracking a random segment, then
an attempt is made to begin a burst by comparing the error density for the i* interval (surrounded
by 2 errors which gives an effective error density of 2/[interval+2]) with a threshold (Delta). If
the error density for the " interval is greater than Delta, then the algorithm begins tracking a
burst segment, if not then the random segment is continued. If the algorithm is tracking a burst
segment, then the segment is continued until the error density within the total burst segment falls
below the threshold, Delta. In this way, the entire sequence is partitioned. Initializing the
processes is particularly troublesome because of the various combinations for the beginning of
the error seq.

This program inputs parameters from an ASCII data file with default name ’DeltaEst.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name *DeltaEst.ID’, where ID is a three
letter identifier for the current run which is input from file 'ID.prm’.

The program is run by editing the parameter file 'DeltaEst.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file *ID.prm’. Executing the
program generates the ’error.seq’ file which contains an error sequence (in packed format) with

deinterleaved errors. The 'error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

17

4. IntvHst (Error Interval Histogram)

This program calculates the error interval probability density function for an error
sequence. The error sequence is partitioned into error free segments and a histogram of the
interval length calculated. Note that the two error free intervals occurring at the beginning of the
error sequence and at the end are ignored. Only intervals between errors are counted.

The program outputs the histogram to file ’Interval.hst’ which (for now) is an ASCII file
with each histogram value stored per record. For each record, the interval index appears first
followed by the probability of occurrence.

Note that there are NO parameters to be read in for this program. However, various
statistics are output to an ASCII data file with default name 'IntvHst.ID’, where ID is a three
letter identifier for the current run which is input from file "ID.prm’.

The program is run by editing the parameter file "IntvHst.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file "ID.prm’. Executing the
program generates the 'Interval.hst’ file which contains the histogram of the error intervals found
in the error sequence. The ’error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
5. GAPEst (fixed GAP burst error distribution Estimation)

This program estimates parameters associated with a bursty error sequence. The method
employed segments the error sequence into error free regions and burst error regions. A burst
error region is defined to be a region which contains errors no two of which are separated by
more than the prespecified GAP number of error free symbols. In addition, the burst error region
is preceded and followed by error free regions of minimum width specified by GAP. The
algorithm implemented operates on the error sequence iteratively. For each iteration, the
algorithm determines the width of the next error free interval, if it is less than GAP then the next
error is included in the current burst, if it is greater than GAP then the previous burst is
terminated and the next burst is started. In this way, the entire sequence is partitioned. If the first
error sequence value is a 0’ then the process always begins with an error free region. If the first
error sequence value is a ’1’ then the process always begins with an error burst.

18

This program inputs parameters from an ASCII data file with default name "GAPEst.prm’
and outputs the error sequence to data file with default name ’error.seq’. In addition, various
statistics are output to an ASCII data file with default name ‘GAPEst.ID’, where ID is a three
letter identifier for the current run which is input from file "ID.prm’.

The program is run by editing the parameter file 'GAPEst.prm’ and selecting the
appropriate parameters and by choosing a program ID by editing file "ID.prm’. Executing the
program causes the ’error.seq’ file to be read which contains an error sequence (in packed
format). The ’error.seq’ file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
E. Utilities

Several utilities have been developed to support CLEAN. The makefile given in the
following section can be used to compile the source code with a single command by typing

'make all’. The programs which follow allow the user to compare error sequences, set error
sequences, and display error sequences.

1. Make Utility for Lahey Fortran v5.0

FFLAGS = /3 /B /nAl /Cl1 /P /R /Z1

CorrCW = CorrCW.obj Unpack.obj Pack.cbj
GaussRV = GaussRV.ob) UnifRV.obj

IterBin = IterBin.ob)] UnifRV.obj

LdBuffl = LdBuffl.obj Unpack.obj

LdBuff4 = LdBuffd4.ob) Unpack.obj

NextBrst = NextBrst.ob) UnifRV.ob3j GaussRV.ob)
NextInt = NextInt.obj LdBuff4.obj

NextLnth = NextLnth.ob3j UnifRV.obj GaussRV.ob)
3vBuffl = SvBuffl.obj Unpack.obj Pack.cbj
SvBuff4 = SvBuffd.obj Unpack.obj Pack.obj
TotalPe = TotalPe.obj Unpack.obj

ALL : BinErrs BlkArr BlkDecocd Blockint BrstErrs \
BstyErrs CompSeqg CVMblk CVMseq DeltaEst DisplFil DisplSeag \
DPCI DPCIOld GAPest IntvHst SetErrs

BINERRS : BINERRS.obj $(IterBin) Pack.obj UnifRV.obj
Optlink BINERRS.obj $(IterBin) Pack.obj UnifRV.obj, \
BINERRS.exe,,c:\compiler\lahey\F77L.LIB

BLKARR : 3BLKARR.obj $(LdBuffl) $(SvBuffl) DispBufl.objy
Optlink BLKARR.ob3j $(LdBuffl) $(SvBuffl) DispBufl.obj, \
BLKARR.exa,,c:\compiler\lahey\F77L.LIB

BLKDECCOD : BLKDECOD.obj $(LdBuff4) $ (CorrCw)
Cptlink BLKDECOD.obj S${(LdBuff4) $(CorrCw), \
BLKDECOD.exe, ,c:\compiler\lahey\F77L.LIB

BLOCKINT : BLOCKINT.obj $(LdBuffl) $(SvBuffl) Pack.obj
Optlink BLOCKINT.ob3j $(LdBuffl) $(SvBuffl) Pack.obij, \
BLOCKINT.exe, ,c:\compiler\lahey\F77L.LIB

BRSTERRS : BRSTERRS.ob7j $(IterBin) Pack.obj UnifRV.obj $(Next3rst) § (WextLnth)
Optlink BRSTERRS.obj $(IterBin) Pack.obj UnifRV.ob3j $(NextZrst) S (NWextLnth) , \
BRSTERRS.exe,,c:\compiler\lahey\F77L.LIB

BSTYERRS : BSTYERRS.obj $(IterBin) Pack.obj UnifRV.obj $(Next3rst) $§(NextLnth)
Optlinkx BSTYERRS.obj) §(IterBin) Pack.ob3j UnifRV.ob3j §(NextI3rst) S(NextLnth) , \
BSTYERRS .exe, ,c:\compiler\lahey\F77L.LIB

COMPSEQ: CCMPSEQ.obj Unpack.obj
Optlink COMPSEQ.ob3j Unpack.oby, \
COMPSEQ.exe,,c:\compiler\lahey\F77L.LIB

CVMblk : CVMblk.obj $(LdBuff4) RdStats.ob3
Optlink CVMblk.obj §(LdBuff4) RdStats.obj, \
CVMblk.exe,,c:\compiler\lahey\F77L.LIB

CVMseq: CVMseq.obj $(LdBuffd) §$(NextInt) RdStats.obj]
Cptlink CVMseqg.obj $(LdBuffd4) § (NextInt) RdStats.obj,
CVMseq.exe, ,c:\compiler\lahey\F77L.LIB

DELTAEST : DELTAEST.obj ${(LDBuff4) $(NextInt) $(TotalPe)
Optlink DELTAEST.obj $(LDBuff4) $(NextInt) $(TotalPe) , \
DELTAEST.exe, ,c:\compller\lahey\F77L.LIB

DISPLFIL : DISPLFIL.obj Unpack.obj
Optlink DISPLFIL.cbj Unpack.obij,
DISPLFIL.exe,,c:\compller\lahey\F7T7L.LIB

DISPLSEQ: DISPLSEQ.cob3j Unpack.obj
Optlink DISPLSEQ.obj Unpack.obj, \
DISPLSEQ.exe,,c:\compiler\lahey\F77L.LIB

DPCI DPCI.obj Unpack.obj Pack.obj
Optlink DPCI.obj Unpack.obj Pack.ob?), \
DPCI.exe,,c:\compiler\lahey\F77L.LIB

DPCIOLD : DPCIOLD.ob3j Unpack.obj Pack.ob)
Cptlink DPCIQLD.obj Unpack.obj Pack.oba, \
DPCICLD.exe,,c:\compiler\lahey\F77L.LIB

GAPEST : GAPEST.obj S(LdBuff4) 3 (NextlInt)
Jptlink GAPEST.ob3j $(LdBuffd) §(VNextInt) , °\
GARPEST.exe,,c:\compller\lahey\F77L.LI%

IntvHst : IntvHst.obj $(LDBuff4d) §(NextlInt)
Optlink In:tvHst.obj $(LDBuffd) S (NextInt) , \
IntvHst.exe,,c:\compiler\lahey\F77L.LIB

SETERRS : SETERRS.obj Pack.obj
Optlink SETERRS.ob3j Pack.obj, \
SETERRS.exe,,c:\compiler\lahey\F77L.LIB

BINERRS.cb3j : ZINERRS. for
F77L BINERRS.for $(FFLAGS)

BLKARR.ob3j : BLKARR.for
F77L BLKARR. for §(FFLAGS)

BLKDECOD.ob3 : BLKDECOD. for
F77L BLKDECOD.for §(FFLAGS)

BLOCKINT.obj : BLOCKINT. for
F77L BLOCKINT.for §(FFLAGS)

BRSTERRS.0bj : BRSTERRS. for
F77L BRSTERRS.for $(FFLAGS)

BSTYERRS.ob3 : BSTYERRS. for
F77L BSTYERRS.for $(FFLAGS)

CCMPSEQ.obj : COMPSEQ. for
F77L COMPSEQ. for §(FFLAGS)

CVMblk.obj : CVMblk. for
F77L CVMblk. for $(FFLAGS)

CVMseq.ocbj : CVMseq. for
F77L CVMseq.for §(FFLAGS)

CorrCW.obj : CorrCW. for
F77L CorrCW.for $(FFLAGS)

DELTAEST.ob3j : DELTAEST. for
F77L DELTAEST.for $(FFLAGS)

DispBufl.obj : DispBufl.for
F77L DispBufl.for $(FFLAGS)

DispBuf4.obj : DispBuf4.for
F77L DispBuf4.for $(FFLAGS)

DISPLFIL.ob3j : DISPLFIL.for
F77L DISPLFIL.for $(FFLAGS)

DISPLSEQ.obj : DISPLSEQ.for
F77L DISPLSEQ.for $(FFLAGS)

DPCI.cbj : DPCI.for
F77L DPCI.for $(FFLAGS)

DPCIOLD.ob3 : TPCIOLD. for
F77L DPCIOQLD.for $(FFLAGS)

SAPEST.ob3j : GAPEST. for
F77L GAPEST.for $(FFLAGS)

GAUSSRV.ob3j : GAUSSRV. for
F77L GAUSSRV.for §(FFLAGS)

IntvHst.obj : IntvHst.for
F77L IntvHst.for §(FFLAGS)

ITERBIN.obj : ITERBIN.for
F77L ITERBIN. for §(FFLAGS)

LOBUFFl.cbj : LDBUFFl.for
F77L LCBUFF1l.for S(FFLAGS)

LDBUFF4.cbj : LDBUFF4. for
F77L LDBUFF4. for $(FFLAGS)

NEXTBRST.obj : NEXTBRST. for
F77L NEXTBRST.for $(FFLAGS)

NEXTINT.obj : NEXTINT. for
F77L WEXTINT.for $(FFLAGS)

NEXTLNTH.obj : NEXTLNTH. for
£77L NEXTLNTH. for $(FFLAGS)

ACK.ocb3y : PACK.for
F77L PACK.for $(FFLAGS)

~dStats.obj : RdStats.for
F77L RdStats. for §$(FFLAGS)

SETERRS.ob3j : SETERRS. for
Z77L 3ZTERRS. {or $(FFLAGS)

SVBUFF1l.cb) @ 3VBUFFL. for
F77L 3VBUFFl.for $(FFLAGS)

SVBUFF4.0bj : SVBUFF4. for
£77L SVBUFF4.for $(FFLAGS)

TotalPe.obj : TotalPe.for
F77L TotalPe.for S$(FFLAGS)

UNIFRV.ob3j : UNIFRV.for
F77L UNIFRV.for $(FFLAGS)

JNPACK.obj : UNPACK. for
F77L UNPACK. for $(FFLAGS)

2. CompSeq (Compare Sequence)

20

This program compares two error sequences and identifies those error locations where the
two are different. The user is prompted for the two error sequence filenames. It is assumed that

the errors stored in error.seq are in the DBESS (Double Byte Error Sequence Symbol) packed

format.

3. SetErrS (Set Error Pattern)

This program interactively allows the user to input an error sequence. All parameters and

the error sequence are input directly from the user so that there is no parameter file associated
with this program. The errors are stored in the DBESS packed format.

There are no assumptions associated with the implementation or output of this program.

4. DisplSeq (Display Default Error Sequence)

This program displays the error sequence found in file error.seq’. It is assumed that the
errors stored in error.seq are in the DBESS packed format.

5. DisplFil (Display Error Sequence from user File)

This program displays the error sequence found in a file specified by the user. Itis
assumed that the errors stored in the file are in the DBESS packed format.

21

22

IV. NASA GSFC/MSU INTERRELATED CAPABILITIES

To enhance the research efforts at both MSU and NASA GSFC, several interrelated
capabilities have been established. The first author visited GSFC in August of 1992 to learn how
to use the Communications Link And System Simulation (CLASS) software tool. CLASS
performs a signal level simulation of the TDRS downlink and predicts coded system
performance using theoretical analysis. In addition, the first author learned how to use the OMV
bit-by-bit simulator which uses the same signal level simulation nucleus as CLASS but also
incorporates actual deinterleaving and decoding algorithms to simulate the operation of the
deinterleavers and decoders at White Sands. After learning how to use these software tools,
analyst level access was granted and has been established. It is now possible for MSU personnel
to exercise CLASS and the OMV bit-by-bit simulator remotely from MSU via internet. MSU
appreciates the support given by the NASA/GSFC CLASS group.

Furthermore, real EOS Ku-band downlink data (validity of the data pending) has been
acquired by Victor Sank at GSFC. A program was written to convert from the GSFC error
sequence data format into the format required by CLEAN. Since these data files are sometimes
rather large which requires large storage spaces, a second program was written to archive the
GSFC data using run length encoding, a /ossless compression scheme. For an error sequence
with an error probability of 107, this provides about 3:1 lossless compression. For an error
sequence with an error probability of 10, this provides about 30:1 lossless compression. In
addition, a third program was written to unarchive the run length encoded data into the DBESS
format required by CLEAN. Mr. Sank’s help has been invaluable to this project.

A. EOS Real Error Sequence Data conversion program

This program inputs the real EOS downlink data obtained from Victor Sank and converts it
into the DBESS packed format required by the programs in CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.
B. Error Sequence Archiver using Run Length Encoding

This program inputs the real EOS downlink data obtained from Victor Sank and converts it
into an archival format. The archival format only stores the location of each error in the file.
This is not the format which is necessary for CLEAN. Another program called SeqUnarc can be
executed to convert from the Archival format to the DBESS format required by CLEAN.

23

It is assumed that the input file accessed by this program exists prior to its execution.

C. Error Sequence Unarchiver

This program inputs data in the archival format (run length encoding) via the SeqArc
program and unarchives it to the DBESS format required by CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.

24

V. PREVIEW OF EXPECTED RESULTS

The problem of interest is that of choosing/evaluating a good forward error correcting
coding (FEC) scheme for the Ku-band TDRS downlink which will be used for the Earth
Observation System (EOS). There are many issues to be considered when choosing a "good"
FEC including required error probability, required data rate, and data loss during synchronization
cycles just to name a few.

For example, suppose it is proposed to use a (255,223) Reed-Solomon (RS) code with a
block interleaver for the 150Mbps Ku-band TDRS downlink. If this code meets the required
error probability, say 107, for the types and density of errors anticipated on the link and if it can
accommodate the required data rate, 150Mbpsx(223/255)=131Mbps, then this code can be
considered acceptable. If the decision is made to concatenate a rate 1/2 convolutional encoder
and periodic convolutional interleaver with the RS code and block interleaver, then several
undesirable side effects will take place. First, the hardware complexity will increase which will
increase cost, size, weight, power, etc. Second, the periodic convolutional deinterleaver and
Viterbi decoder at the receiver must synchronize to the received data. The synchronization
process can result in significant data loss. In addition, the convolutional code rate results in a
decrease in the system data rate to 131Mbpsx(1/2)=65.6Mbps, assuming a fixed channel rate.
Although this concatenated scheme may provide a lower error probability which exceeds the
requirement, it is achieved at a significant cost. Therefore, the studies developed for this contract
focus on determining and evaluating the minimum complexity coding scheme for EOS to satisfy
the system requirements. This requires an understanding of the nature of the Ku-band downlink
errors and of the achievable performance for various coding schemes in various types of error
environments.

To this end, the research is being focussed along two main lines as discussed in the
following sections.

A. Research Focus 1

First, the nature of the downlink errors is being investigated. The expected results are a
consequence of discussions with NASA/GSFC and STEL personnel concerning the nature of the
Ku-band downlink errors. The expected results are:

1) Determine that the expected errors which occur in a received block of data are not
random. This is accomplished by applying the Cramer Von-Mises distribution test (see
CVMbIk in Section IIT1.D.2) to the actual data.

25

2) Estimate the error parameters for the actual channel data assuming that the errors are
bursty in nature. These will be estimated by applying the bursty-error parameter
estimation via the A method (see DeltaEst in Section II1.D.3) to the actual data. Itis
expected that the burst locations follow a Poisson distribution. The estimated

parameters are:

a) Average rate of burst occurrence and the burst occurrence interval probability
density function (pdf). It is expected that this pdf is exponential which means
that the burst locations follow a Poisson distribution.

b) The average burst length (in channel symbols) and the burst length pdf. It is
expected the variance of this pdf is small.

c) The average error density during the bursts and the burst error density pdf. It is
expected that the variance of this pdfis small.

d) The average error density outside the bursts. It is expected that this error density
will be very nearly the random error rate.

Because the actual data has not been received to date, this work has not been completed.
B. Research Focus 2

The second focus of this research is the investigation of performance for various coding
schemes in a bursty-error environment. The expected result will be plots similar to the one
shown in Figure 2. Several coding schemes will be considered including:

1) Reed-Solomon (RS)

2) RS, block interleaver (interleave depth of 5)

3) RS, block interleaver (interleave depth of 8)

4) RS outer code, block interleaver (interieave depth of 5), convolutional inner code

5) RS outer code, block interleaver (interleave depth of 5), convolutional inner code,
periodic convolutional interleaver.

The curves drawn are for illustration only but do indicate to some degree the expected shape.
The error ratio R, , as defined in this research, is

_ Total Random Errors

R
i Total Errors

Coded Error Probability (Log10)

Channel Error Probability, 0.001

-2

-5

Theoretical Blk Int/RS

Error Ratio

Figure 2. An expected output performance data product (for illustration only).

26

27

To construct Figure 2, a channel error probability, P(g,,), is chosen. For each possible error rate,
the bursty-error parameters are calculated and CLEAN is used to calculate the decoded error
probability. For example, to simulate system (5) identified above, the following programs are
sequentially executed:

1) BstyErrs (see Section II1.B.3)
2) DPCI (see Section IT1.C.3)

3) Viterbi (see Section IIT.A.2)

4) BlockInt (see Section III.C.1)
5) BlkDecod (see Section III.A.1)

The input parameters must be chosen and input to the appropriate parameter files. The choice
for the input parameters are discussed in the following section. The file ’BlkDecod.ID’ where
ID is the 3 letter identifier found in file "ID.prm’ gives the final decoded error probability. Note
that CLEAN performs a Monte Carlo simulation.

It is expected that the actual plot, similar to that shown in Figure 2, will show that the
Reed-Solomon code used with a block interleaver (interleave depth of 5) is sufficient to provide
the required decoded error probability and, therefore, constitutes the "best" coding scheme.

To date, about 10% of the actual plot has been developed for the choice of parameters
cussed in the following section. The required execution time of some of the programs is og

.
» A

L AL\

C. Choosing System Parameters

Of interest in this research are performance results for codes which are used for space
based communication systems. The Consultative Committee for Space Data Systems (CCSDS) pRESESS
[1] defines a concatenated coding scheme for space based communication systems consisting of
a (255,223) RS outer code followed by an interleaver and a rate 1/2 constraint length 7
convolutional inner code. Therefore, these are the code parameters chosen for study in this
research. To summarize

1) Reed-Solomon code (BlkDecod program)
a) Blocklength, n=255
b) Information codeword length, k=223
¢) Number of binary symbols per codeword, m=8

c) Error correcting capability, =16 code symbols per codeword
2) Convolutional code (Viterbi program)

28

a) Constraint length, K=7

b) Number of code generators, 2 (code rate = 1/2)

c) Tap weights for code generator #1, 1011011

d) Tap weights for code generator #2, 1111001

e) Number of constraint lengths for decoder memory, 4

Also of interest are the interleaver parameters. The Framing and Multiplex Equipment
(FAME) defines a standard architecture for space based communication systems which involves
multiplexing 8 (only 5 are utilized) data streams together to form a single data stream for
transmission to earth. This results in a block interleaving effect for the demultiplexed data input
to the RS decoder. Therefore, the block interleaver imitates the multiplex operation. For the
(255,223) RS code defined above, this requires the block interleaver parameters to be chosen as

3) Block interleaver (BlockInt)
a) Number of rows, 5 (This is alternately chosen to be 8§)
b) Number of columns, 255
¢) Number of binary symbols per memory array element, 8

In addition, the periodic convolutional interleaver currently used has parameters given by

4) Periodic Convolutional Interleaver (DPCI)
a) Number of taps, 30
b) Number of delays for the 2 tap, 2

The only parameters remaining to be specified are the bursty-error parameters. This
requires choosing the burst duration pdf be chosen along with the mean and possibly the
variance, the burst location pdf be chosen along with the mean and possibly the variance, the
error density within the bursts, and the error density outside the bursts. These parameters must
be chosen for the given raw channel error probability, P (g.,), and for each possible value for the
error ratio.

It is known that the Ku-band downlink is characterized by essentially error free
transmission interrupted by short, fixed periods of high interference. The interference is
probably less than 0.3lisec in duration. Although the average time between error bursts is
unknown, the duty cycle of the interference is probably less than 0.025. Given this information,
a worse case scenario can be constructed. If the worse case interference duration is 0.3|isec and
the channel symbol rate is 75Mbps (2 binary symbols per channel symbol for QPSK gives rise to
the required 150Mbps), then (0.3x10°)(75x10°bps)(2bits/channel symbol)=45 binary symbols is
the length of each error burst. As an aside, it is easy to determine that a (255,223) RS code with

29

a depth 5 block interleaver can correct an error burst of 45 binary symbols. However, itis
possible for multiple error bursts to occur within one interleaved block. In light of this
characterization, some of the bursty-error parameters are chosen as follows

5) Bursty-error Generation (BstyErrS)

a) Burst occurrence location pdf, IntvFlag=3 (Poisson)

b) Burst occurrence interval mean, IntvMean=4500 binary symbols

¢) Burst occurrence duration pdf, LngthFlag=1 (Fixed)

d) Burst occurrence duration mean, LngthMean=45 binary symbols
The only two parameters remaining to be chosen are the error probability during the error bursts,
P,,, and the error probability outside the error bursts, P,,. Choosing these is more involved than
the previous parameters because they must be calculated for the predefined raw channel error
probability, P(g,), and because they must be changed to adjust the error ratio.

The method for calculating P,, and P,, in terms of P(g;) and R, is as follows. From [2],

the raw channel error probability for a bursty-error channel is given by
P(e,) =P, (1 -d/M,)+P(dIM,)

where M, is the average interval between error bursts (denoted IntvMean in part 4.b above) and
where d is the burst duration (denoted LngthMean in part 4.d above). The error ratio can be
expressed in terms of these symbols to be

_Peg(l —d/Mv)
T P(ea)

Solving the previous two equations for P,, and P,, gives

- Rtp(ech)
“" 1 -diM,

and
M,
P =—"(1=RIP(e,)

These are valid provided P,, 2 P,,. Note that for given values of d and M,, it is generally not

possible for the error ratio to take on all values from Oto 1. Clearly, P,, < P,, < 1/2, from which
it can be determined that

30

P(e,) -d/(2M,)
P(ech)

<R, <1-dM,<1

which implies that we must have

d
P(e,) 2 oM,

Note that if we choose P(g,,) =d/(2M,) then it is possible to achieve a range for the error ratio of

0 <R, <1 by selecting appropriate values for P,, and P.,.

31

BIBLIOGRAPHY
Consultative Committee for Space Data System, "Recommendations for space data
system standards: Telemetry channel coding." Blue Book, May 1984.

Ebel, W.J,, Sin i 1ati :
Enymmgm Ph D Dlssertatlon Umvers1ty of Mlssoun-Rolla 1991

